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SOME ASPECTS OF THREE-DIMENSIONAL BOUNDARY LAYER FLOWS 

ABSTRACT 

The equations for laminar boundary layer flow over a general surface 

In three-dimensions are analyzed In a normal coordinate system. The 

Invarlance properties of these equations are found using the concept of 

subtensors. The boundary layer equations are not tensor equations but 

subtensor equations. Conditions for the Cartesian form of the equations 

are given and a criterion for no secondary flow Is found In terms of the 

geodesies of the body surface. The displacement effect of the boundary 

layer Is also discussed. 
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SYMBOIS 

Surface metric tensor 

Space metric tensor 

Components of vector whose surface divergence 

Is zero 

Surface metric for orthogonal coordinates 

k 

n 

u u 

or  u ̂   «2* Uj, 

or  u, v, w 

U, V 

or x> y> a 

X 

v 

K 

Space metric tensor for orthogonal coordinates 

Oeodeslc ciunrature of surface strcsmllnes 

Unit normal vector to a curve 

Boundary layer velocity components 

Tangential oomponents of external flow velocity 

Normal coordinates 

"Mass flow defects" 

Displacement surface 

Unit tangent vector to a curve 

Kinematic viscosity 

Ratio of pressure to (constant) density 

Subscripts and superscripts 

1,J, etc. 

a,ß, etc. 

Have the range 1, 2, 3. 

Have the range 1, 2. 



IHTRODUCTION 

In recent times interest in three-dimensional boundary-layer flows, 

measured by the number of published papers on the subject, has grown 

considerably. A review of the subject is given by Sears[ll . Most of 

the work cited by Sears is concerned with the solutions to particular 

problems. To the author's knowledge the only general discussions of 

boundary layers in three-dimensional flows are contained in the work of 

Howarth [2] , Moore [3] , and Hayes [>] . However there is also some work 

of C C. Lin, contained in Chapter 18 of [5] , in which the appropriate 

equations are derived without much discussion. This latter work seems 

to be the first to derive the boundary layer equations for a general curved 

surface but has been overlooked by most authors. The way in which Lin 

derives the equations turns out to be useful in discussing the invariance 

properties of the boundary layer equations. 

In this paper it is first shown that Lin's approach carries over to 

a more general class of coordinate systems. Certain invariance properties 

follow from examining the resulting equations. Now it is known that the 

two-dimensional boundary layer equations are not tensor equations and one 

would expect the same reflult in three-dimensions (In [k] ,  Hayes seems to 

imply the contrary). However, in the language of [>] , the boundary layer 

equations are subtensor equations which means that they are invariant with 

respect to certain types of coordinate transformations. This does not 

contradict the work of Lagerstrom and Kaplun, [7]and[8] , where xhe non- 

tensor character of the boundary layer equations is used to define an 

"optimum coordinate system". A similar procedure could be developed for 

three-dimensional flows, however a more general coordinate system than 

that used here would have to be considered. 

Prom the subtensor form of the equations, it is easily shown that 

they reduce to the "Cartesian form" (as is true for any two-dimensional 

flow) for any surface whose Gaussian curvature is zero if appropriate 

coordinaies are used. Howarth, [2] , concludes that this happens only for 

planes and cylinders. The curvature effects that Howarth describes include 



property that the distance expresalon is given by 

that Is, 

ds2 = g^ dxadxß + g33(äx
3)2 

8^-0 

There is no unique vay of choosing our normal coordinate system since all 

that is required is that the given surface be one "of the family. A simple 

special case is the geodesic normal coordinate system in vhich the family 

of surfaces is obtained by measuring off constant distances from a given 

surface along the geodesies which cut the surface orthogonally. In this 

special case 

633-I 

This is the coordinate system used by Lin [5] . 
3 

The surface x » 0 is, in general, a Riemannian 2-space. In this 

subspace ve can carry out tensor operations and these will be intimately 

related to the tensor operations of the parent 5-space. We use a comma 

to denote covariant differentiation in the 5-space and a semi-colon for 

the same operation in the subspace. A set of quantities T which trans- 

form according to .the law 

T^ = Tß (&c
ß/ax«a) 

under a transformation of the form 

x.« . f(0>) (^P) 

is called a subtensor. If a tensor T« is split up into two groups T , T 

then for (l) Ta is a subtensor and T, is a subinvariant, and similarly 

for higher order tensors. Also the Christoffel symbols, in which one or 

more of the indices have the value 3, are subtensors. A more detailed 

discussion of subtensors is given in [öl . 



the effects of a curvilinear coorulÄate uystem. (in [3] , Moore states 

that the Cartesian form applies to any curved tfurfaoe which is certainly 

not true.) . 

Using the streamline coordinates as in[k], it follows that a 

boundary layer flow is essentially two-dimensional if there Is no 

secondary flow. A simple criterion for no secondary flow is given in 

terms of the geodesies of the surface. Finally the displacement effect of 

the boundary layer is discussed. This is done in a different way than 

by Moore, [9] , and some differences between the two- and three- dimensional 

cases are discussed. 

Only laminar flows of an incompressible, non-conducting fluid are 

discussed. Some of the conclusions should hold in more general cases, 

however. Also body force« have been neglected and difficulties due to 

separation effects are not discussed. 

THE BOUMDARY LAYER EQUATIOHS 

In applying the boundary layer concept to the flow of a viscous 

fluid we have some given surface to consider, for example a solid body 

or an interface between tvo fluids. This basic surface is used to define 

a coordinate system: it is one of the coordinate surfaces. A convenient 

class of coordinate systems is the normal coordinate systems, [s]  , which 

is defined as follows. A given one-parameter family of surfaces in a 

Riemannian N-space has a family of orthogonal trajectories such that, 

under very general conditions, only one trajectory passes through each 

point of space. The parameter of the family of surfaces is denoted by xN 

and on one of the surfaces a coordinate system x1, ..., xN_1 is set up. 

We shall be concerned with a Euclidean 3-space although the derivation of 

the boundary layer equations would proceed in the same way for more 

general spaces. 

The convention is adopted that Greek suffixes have the range 1, 2 and 

small Latin suffixes the range 1, 2, 3. The given surface over which we 

consider the boundary layer flow is the one on which the coordinates xa are 

defined and for this surface x5 = 0. Normal coordinate systems have the 



property that the distance expression is given by 

ds2 = g^ dxadxß + g53(äx
3)2 

that is, 

6^=0 

There is no unique way of choosing our normal coordinate system since all 

that is required is that the given surface he one of the family. A simple 

special case is the geodesic normal coordinate system in which the family 

of surfaces is obtained by measuring off constant distances from a given 

surface along the geodesies which cut the surface orthogonally. In this 

special case 
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This is the coordinate system used by Lin [^1 . 

3 
The surface x = 0 is, in general, a Riemannian 2-space. In this 

subspace we can carry out tensor operations and these will be intimately 

related to the tensor operations of the parent 3-space. We use a comma 

to denote covariant differentiation in the 3-space and a semi-colon for 

the same operation in the subspace. A set of quantities T which trans- 

form according to ,the law 

T^ = Tß (öx
ß/ax'a) 

under a transformation of the form 

x,a „ f(a) (xP) 

I5 = V5 
(1) 

is called a subtenaor. If a tensor T. is split up into two groups T , T, 

then for (l) T Is a subtensor and T, Is a sublnvariant, and similarly 

for higher order tensors. Also the Christoffel symbols, in which one or 

more of the indices have the value 3, are subtenaors. A more detailed 

discussion of subtensors is given in 16 I . 



The derivation of the boundary layer equations is straight-forward 

but tedious. The procedure here is essentially the same as Lin's for the 

special case of a geodesic normal coordinate system end therefore will 

not be discussed in detail, (dome errors were found in the details of 

[5] but these only affected terms which drop out in the boundary layer 

approximation.) Starting from the Navier-Stokes equations in tensor form 

(äu^öt) + u^, « v^\>sk " Ä,l 
/ (2) 

where « Is the ratio of pressure to the constant density, the following 

steps are necessary. The momentum equations are split up into two groups 

(as Illustrated above with T.); the covariant derivatives are expressed 

In terms of the "sub-covariant derivatives"; a transformation 

£.x5/vl/2 , Uj-uj/v1/2 (3) 

Is applied; all quantities, including the metric tensor and Christoffel 
l/2 

symbols, are expanded in a power series in v ' j the equations for the 

lowest order terms then yield the boundary layer equations 

(a^/dt) + u
ßua.ß + (lyg^xayao - - *{a 

+ ^Va{2)/g35 

hn/bi = 0     (k) 

uß;p + Cßu
ß + (^/dO/gj,  - 0 

where -, 
ca - (ög33/axa)/2g35 

and the metric tensor for ('O is a^« where        . « 

V W^'X ,0) 

The boundary layer equations (k) reduce to those given by Lin for g,, - 1. 

(Hote that, in the procedure outlined above, nothing is implied about 

the higher approximations obtained from the series expansion. Consideration 

of these involves significant difficulties, [IJJ .) 

10 



Under transformations of the form (l) It is easily seen that eqiuatlons 

(If) are invariant since U, and g„ are invariant. Thus the boundary layer 

equations have subtensor character. This is not too surprising since what 

destroys the tensor character of this approximation is the transformation 

(3) and this is not affected by (l). Also in the subtensor form it becomes 

obvious that the boundary layer equations reduce to "Cartesian form" for 

any surface of zero curvature (flat 2-space) in which the coordinates x 

are Cartesian coordinates provided that a geodesic normal coordinate system 

is used, i.e. g„ » 1. This conclusion differs from Kftrarth's, ^2j , 

because he restricts his analysis (which uses a geodesic normal system) to 

coordinate systems xa which can be Cartesian only for planes and cylinders. 

Because of the subtensor character ot (k) there is complete freedom in the 

choice of x . However, the choice of Cartesian coordinates x on a 

developable surface may not always be the most advantageous. For example, 

the form of the terms it._. which are determined by the external flow, may 

be complicated by such a choice. It must be remembered that the conclusion 

concerning when the boundary layer equations reduce to Cartesian form 

applies only to within the approximations of the standard theory. For 

example, for the flow over on open-ended cylinder the equations are in 

Cartesian form(for appropriate xa) but the usual boundary layer approximations 

become Invalid as the distance from the leading edge increases. Finally, it 

may be noted, even for flow over a plane the equations will have curvature 

terms appearing if xa are not Cartesian coordinates. 

The boundary layer equations {k)  can be writter. in the more conventional 

form in terms of the physical components of the velocity. Before doing this 

let us specialize to orthogonal coordinates x and change the notation for 

the metric tensor 

gli s Hl 

a  = h (no summation) (5) 
oa  a x 

g55(x
1,x ,0) - h5 

11 



where h   Is not a function of x .    Also denote the physical components a 
of the velocity by u, v, and w.    Thus 

u » \/\ v 

v » Ug/l^ 

w - Uj/hj 

since for CO the metric tensor cooiponents are the lower case h's.    In 
terms of the physical congponents, using x, y, and z as coordinates, equatioas 

(k) become 

+ wua/h3 - - n^ +   vu^Ai 

vt + ^JA. + ^/^ + ^W11!^ " u ^j/^ 

*z    -0 

[O^j^x + (hlh3v)y]     /\*2   +wz/h5"0 

irtiere the subscripts t, x, y, and z denote partial differentiation. These 

reduce to Howarth's equations [2] for h- « 1, i.e. a geodesic normal coordinate 

system. Hayes, [it] , gives these equations (if compressibility is neglected 

in bis equations) except that he, in some vav, allows h, to depend on z. 

Finally, it can be remarked that, to examine the flow in the neighbor- 

hood of a stagnation point, as Hbwarth has done, [lo] , It is only necessary 

to Introduce a Riemannian coordinate system for xa with origin at the 

stagnation point. 

Since the boundary layer equations are invariant under transformation» 

of the surface coordinates xa, it is natural to look for coordinates which, 

under certain conditions, simplify the general equations. An ingenious 

SECONDARY FLOW 

12 



choice of coordinates was aade by Hayes, \k\ ,    For a steady external 

flow the coordinate x Is chosen along the streamlines of the external 

flov evaluated on the surface and x Is along the orthogonal trajectories 

of these streamlines. If U and V are the physical components of the 

external flow, evaluated on the surface, In the x and y (or x1 and x2) 

directions, then for this choice of coordinates V = 0 and 

- 'sA. • wJh 
(7) 

y^= - ^ 
where 

i.e. k is the geodesic curvature of the streamlines. Consider steady flow 

in the boundary layer. The boundary conditions for v are 

v = 0, x —*~to 

and, if the surface over which the flow is considered is a solid, non- 

spinning body, 

v = 0, z m 0 

Now if k <* 0, it is seen from (?) and the second equation of (6) that 

v - 0 is a solution. The term "secondary flow '^also cross flow) is used 

to Indicate that the streamlines in the boundary layer flov do not coincide 

with the external flow streamlines evaluated on the body. Also k > 0 has a 

simple geometric Interpretation: the streamlines are geodesies of 

the surface. Thus, for steady flow over a non-spinning body, there is no 

secondary flow if the external flow streamlines are geodesies of the body 

surface. 

A simple example of the above conclusion is provided by the flow over 

a flat plate with an arbitrary leading edge placed in a uniform stream at 

no angle of attack; see Figure 1. 

13 
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The external flow Btreamlines are Just straight lines on the plate so 

there is no secondary flow. (Moore, [5] ,  reaches this conclusion fcy 

finding a solution of the flow equations. He also indicates how 

difficulties arise if the leading edge does not have a continuously 

turning tangent.) A special case of this is the yawed flat plate. 

However consider yawed infinite cylinders, which many authors have done, 

TlJ • It is easy to see, using the above criterion, that the yawed flat 

plate is the only case with no secondary flow since for any other cylinder 

the external flow streamlines cannot be geodesies. 

Since v B 0 in the streamline coordinates for k ■ O, the boundary 

layer flow is essentially two-dimensional. Equations (6), written for 

a geodesic normal system, became 

uu^ + wuz - UUf/^ + vu2Z 

(8) 
z 

(V VVa + ^ -0 

A new coordinate, X, can be Introduced, 
x 

X » /  h, dx 
Jo 

and then equations (8) are seen to be In exactly the form of the boundary 

layer equations over a body of revolution. Therefore the same 

transformation that Mangier, [ll]  , has introduced will reduce equations 

(8) to the standard two-dimensional equations. Mangier*s transformation 

18 *-xx^ 2dX 

V V 
(9) 

u 

w ■ hgW' s \ »■ 

15 



Note that the coordinate transformation here Is not of the type (l) 

and that the transformation to new velocity components (u1 ^v1) does 

not follow a tensor lav. Hayes has Indicated the possibility of 

transforming the no-secondary flow equations to two-dimensional 

form. However his transformation is made by choosing the form of the 

metric tensor in a suitable manner and it would be very difficult 

to find out exactly what the transformed coordinates are. From the 

discussion above it is seen that the transformation is Just that of 

Mangier, except that y appears as a parameter. 

DISPLACEMENT SURFACE 

The displacement of the external flow streamlines by the retarding 

action of the boundary layer Is an important effect. In two-dimensional 

flow the definition of displacement thickness, which is a measure of 

this effect, is straightforward and there cure several equivalent 

definitions. In three-dimensional flow, if one proceeds in strict 

analogy to the two-dimensional case, two displacement thicknesses 

can be defined, Tj) J . These are 6 . and B ^  where 

U6  - fh   (U - u) dx5 
x^  »o 

VB  - '   /"  "x ■,"5 

(10) 

V 

v 

16 



in which (u,v) and (U,V) are the physical components of the velocity in 
1    2 

the x and x directions in the boundary layer and the external flow 

respectively and h is "some location veil outside the boundary layer." 

(The coordinates xa are again general coordinates, not the streamline 

coordinates of the previous section.) Moore refers to these lengths as 

characterizing mass flow defects and then, using these, defines a 

displacement surface as follows. In a geodesic normal coordinate system, 

the displacement surface xr  = A(x^,x ) is an "impermeable surface which 

would deflect a nonviscous fluid in such a way as to produce a normal 

velocity (W) satisfying" 

W - w(^,x2) at x5 « h{xl,x2) 

where h has the same meaning as above, and W is the external flow normal 

velocity. After some approximations Moore gives a differential equation 

for A, [9] . 

Here, using a slight modification of one of the two-dimensional 

definitions, an equation for A is obtained. This approach la quite 

different from Moore's but, making Just the boundary layer approximations, 

this equation reduces to that of Moore. Analysis of the original equation 

shows an Interesting difference between the three- and two-dimensional cases. 

In the following derivation geodesic normal coordinates are used and 

all vectors are in physical components. It is convenient to use the suffix 
5 

notation for the range 1, 2 but we set z - x . First we dispose of some 

geometrical preliminaries. It can be shown that (see [^J ,  for example) 

the metric tensor components g~e are quadratic functions of z 

%ß = aaß+2V+caßz2 (11) 

where a^Q has already been defined and op 

caß = (*Vöz2)o/2- 

17 



Also the following relation holds 

c_ = a Vb«. (12) aß    ao ßp 

Specializing to orthogonal surface coordinates, by means of (12), 

equations (11) can be written as a perfect square. In the notation 

of (5) 

where 

i   * ^oc/^a       ^no sunma'tlon) (lb) 

If on a surface z = c ~ constant we draw a simply chosed curve, the 
tangent vector, X, and the normal vector, n, have the components 

X: (HjdxVdi» ^cb^/da) 

(15) 

n: (-Hgdb^/ds, HjdxVds) 

where S Is the arc length along the curve. 

To define a displacement surface we consider the flux of fluid 

through a developable surface S formed by the normals to the surface z - 0, 

passing through a simply closed curved K on z - 0) see Fig. 2. 

18 



FIGURE   2 
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This flux Is conputed for that part of S between x = 0 and z = h. For a 

velocity distribution Q this flux Is given by 

FQ - / Q.ndS - f f     (Q^fcc1 - C^Hgdx2)^      (l6) 
c 

where K Is the trace of the developable surface on the surface z « c and c 
o<c<h. The displacement surface 

Is a surface such that the flux through S, for 0<z<h, is the sane for 

the following two velocity distributions 

I: \ = 02- 0 for 0<z<A 

\ 
= U 

for A<z<h 

a *2 = V 

II: «1 ■ u 

for 0<z<h 

«2 = V 

From (16) we set 
• 

FI -PII 

end this Is the condition Imposed to find A. Interchanging the order of 

integration and making use of (13) and (Ik),  after wnlch the line Integrals 
are calculated for K , this requirement yields 

J (O^dx2 - Gghjdx1) - 0 (17) 
Ko 

where .h 
Gj^ = UA [ 1 + (igAteh,) ] + f   (u - u) [1 + («ia^a)] da 

0
h (l8) 

G2 = VA [l + (^A/21^)] + f    (v-- V) [l + (ai^)] to 

The Integral In (l?) can be written as an Integral over the area bounded by 

K0 using the "surface divergence theorem" [12] . Since K0 Is arbitrary 

we then obtain the result 

div G = 0 (19) 
20 



for the vector 0: (OiiO where the operator div is the "surface 

divergence" f^J , I.e. 

div 0 -f-V-Jh^) + -^- (h^)] /h^ 
L äx        dx      J 

or in the subtensor notation (I9)cau be written 

(f*     -0 

For given velocity distributione I and II and a value of h, (19) is a 

differential equation for A. However, in boundary layer theory, h cannot 

be given a definite value. In fact, in accordance with the requirements 

of this fehfeory, we must let h->>p*** (Extrapolating from the two-dimensional 

case, the integrals should converge since u-^U, v->V exponentially as 

Thus far we have made no approximations. We take (U,V) to be the 
1     2 

(physical) velocity components, in the x and x directions, of the external 

flow evaluated on the surface z ■ 0 and (u,v) the corresponding velocity 

components throughout the boundary layer. Applying a transformation of 

the type (3) to z and A and keeping only the lowest order terms in (18) 

gives the boundary layer approximation to G, and Gp 

(20) 

using the definitions (10). With these expressions (20) for the vector 0, 

(19) is essentially Moore's equation,[VJ, for the displacement surface. 

Moore gives some examples of the computation of A for special kinds of 

flow. Here we give a simple example by specializing only the coordinate 

system. For the streamline coordinates of the previous section V = o, 

therefore Op = T** v<iz aad (19) becomes 

Gl 
= UA + 

0 

(u. ■ U)dz » U(A - v 
G2 = VA + JT (v - V)dz = V(A. V 

[^(A - 6^)1  /ox1 - - Ö^GgVäx2 « P(x1,x2) 

21 



l'HUE 

n2U(A - B ) - jFix1^2)^1  + f(x2) 
2    x 

vhere f(x ) is a constant of the Integration with respect to x1 and must 

be evaluated from the conditions of the flow. Note that in the streamline 

coordinates 65 is undefined. 
x 

The method used above to obtain A is a modification of the 

corresponding two-dimensional definition ofi displacement thicknsss. In 

two dimensions tne developable surface S is taken to be a plane 

perpendicular to the plane of flow and as a result no differential 

equation need be solved for the displacement thickness. The A 

determined from (19) using (20) differe- from the 6 of (10) by a 

constant of integration which, in most cases of interest, is zero. 

This is discussed by Moore,/^T . 

However, it is interesting to compare the general expressions (l8) 

for the vector G in the two- and three-dimenelonal cases. Let x2 - 0 

be the plane of flow for a two-dimeneional flow. Then v - V - 0 and 

it is easy to show that i,, = 0. JThus the terms that are neglected after 

making the boundary layer approximations to obtain (20) disappear auto- 

matically for the special case of two-dimensional flow. This would be 

important if one wanted to calculate approximations to a viscous flow 

beyond the classical boundary layer theory as Kuo,fIj] , has done for 

two-dimensional flow past a flat plate. Per two-dimensional flow the 

displacement thickness expression does not change for the higher order 

approximations whereas for three dimensional flow, including axialiy 

ayiuoetrlc flow, an expansion of the expressions (18) In powers of v1/2 

would tie necessary. 

R. SEDNEY^ 
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